题意:给定两个数组 构造一个配对 使得每个位置上之差的和最小 大小相同的不能配对
题解:猜了一下 应该把两个数组排序一下 答案最小
处理相同的不能配对的时候 那么应该找就近的交换
猜一下 如果有合法方案的话 肯定一个大小为3的环就能解决配对问题了
#includeusing namespace std;typedef long long ll;const ll INF = 1e12; int q[100005];int w[100005];ll dp[100005]; ll abss(ll x, ll y){ if(x == y) return INF; else if(x > y) return x - y; else if(x < y) return y - x;} int main(){ dp[0] = 0; int n; scanf("%d", &n); for(int i = 1; i <= n; i++) scanf("%d%d", &q[i], &w[i]), dp[i] = INF; sort(q + 1, q + 1 + n); sort(w + 1, w + 1 + n); for(int i = 1; i <= n; i++) { if(i >= 1 && dp[i - 1] != INF) { //if(i == 3) cout<<"hi"< = 2 && dp[i - 2] != INF) { ll x1 = abss(q[i], w[i - 1]); ll x2 = abss(q[i - 1], w[i]); dp[i] = min(dp[i], dp[i - 2] + x1 + x2); //if(i == 3) cout< < = 3 && dp[i - 3] != INF) { ll x1 = abss(q[i], w[i - 2]); ll y1 = abss(q[i - 1], w[i - 1]); ll y2 = abss(q[i - 2], w[i]); dp[i] = min(dp[i], dp[i - 3] + y1 + y2 + x1); ll z1 = abss(q[i - 1], w[i]); ll z2 = abss(q[i - 2], w[i - 1]); dp[i] = min(dp[i], dp[i - 3] + z1 + z2 + x1); ll o1 = abss(q[i], w[i - 1]); ll o2 = abss(q[i - 1], w[i - 2]); ll o3 = abss(q[i - 2], w[i]); dp[i] = min(dp[i], dp[i - 3] + o1 + o2 + o3); //if(i == 3) cout< <